281 research outputs found

    GLOBAL ADVERTISING IN THE INTERNET ERA: THE STANDARDIZATION-CUSTOMIZATION DEBATE REVISITED

    Get PDF
    Advertising is a huge worldwide industry growing in importance due to the high penetration rate through mainstream media channels and the internet, reflecting social values worldwide. While the standardization versus localization debate has quite matured in the case of traditional advertising, it has not yet touched upon most critical issues related to digital marketing. The paper reviews the literature, compares both the strategies, and conclude with recommendations for global advertising decision makers

    5-azacytidine promotes microspore embryogenesis initiation by decreasing global DNA methylation,but prevents subsequent embryo development in rapeseed and barley

    Get PDF
    17 p.-10 fig.Microspores are reprogrammed by stress in vitro toward embryogenesis. This process is an important tool in breeding to obtain double-haploid plants. DNA methylation is a major epigenetic modification that changes in differentiation and proliferation. We have shown changes in global DNA methylation during microspore reprogramming. 5-Azacytidine (AzaC) cannot be methylated and leads to DNA hypomethylation. AzaC is a useful demethylating agent to study DNA dynamics, with a potential application in microspore embryogenesis. This work analyzes the effects of short and long AzaC treatments on microspore embryogenesis initiation and progression in two species, the dicot Brassica napus and the monocot Hordeum vulgare. This involved the quantitative analyses of proembryo and embryo production, the quantification of DNA methylation, 5-methyl-deoxy-cytidine (5mdC) immunofluorescence and confocal microscopy, and the analysis of chromatin organization (condensation/decondensation) by light and electron microscopy. Four days of AzaC treatments (2.5 μM) increased embryo induction, response associated with a decrease of DNA methylation, modified 5mdC, and heterochromatin patterns compared to untreated embryos. By contrast, longer AzaC treatments diminished embryo production. Similar effects were found in both species, indicating that DNA demethylation promotes microspore reprogramming, totipotency acquisition, and embryogenesis initiation, while embryo differentiation requires de novo DNA methylation and is prevented by AzaC. This suggests a role for DNA methylation in the repression of microspore reprogramming and possibly totipotency acquisition. Results provide new insights into the role of epigenetic modifications in microspore embryogenesis and suggest a potential benefit of inhibitors, such as AzaC, to improve the process efficiency in biotechnology and breeding programs.Work supported by projects (references BFU2008-00203, BFU2011-23752, AGL2014-52028-R) funded by the Spanish Ministry of Economy and Competitiveness (MINECO) and the European Regional Development Fund (ERDF/FEDER). AAET is recipient of a predoctoral fellowship of the JAE-Pre Program of the Spanish National Research Council, CSIC (JAEPre2010-052), cofunded by ERDF/FEDER.Peer reviewe

    Microfluidic SAXS study of lamellar and multilamellar vesicle phases of linear sodium alkylbenzenesulfonate surfactant with intrinsic isomeric distribution

    Get PDF
    The structure and flow behaviour of a concentrated aqueous solution (45 w.t. %) of the ubiquitous linear sodium alkylbenzene sulfonate (NaLAS) surfactant is investigated by microfluidic small-angle X-ray scatterong (SAXS) at 70 ⁰C. NaLAS is an intrinsically complex mixture of over 20 surfactant molecules, presenting coexisting micellar (L1) and lamellar (Lα) phases. Novel microfluidic devices were fabricated to ensure pressure and thermal resistance, ability to handle viscous fluids, and low SAXS background. Polarized light optical microscopy showed that the NaLAS solution exhibits wall slip in microchannels, with velocity profiles approaching plug flow. Microfluidic SAXS demonstrated the structural spatial heterogeneity of the system with a characteristic lengthscale of 50 nL. Using a statistical flow-SAXS analysis we identified the micellar phase and multiple coexisting lamellar phases with a continuous distribution of d spacings between 37.5 Å - 39.5 Å. Additionally, we showed that the orientation of NaLAS lamellar phases is strongly affected by a single microfluidic constriction. The bilayers align parallel to the velocity field upon entering a constriction and perpendicular to it upon exiting. On the other hand, multi-lamellar vesicle phases are not affected under the same flow conditions. Our results demonstrate that, despite the compositional complexity inherent to NaLAS, microfluidic SAXS can rigorously elucidate its structure and flow response

    Prior Mating Experience Modulates the Dispersal of Drosophila in Males More Than in Females

    Get PDF
    Cues from both an animal’s internal physiological state and its local environment may influence its decision to disperse. However, identifying and quantifying the causative factors underlying the initiation of dispersal is difficult in uncontrolled natural settings. In this study, we automatically monitored the movement of fruit flies and examined the influence of food availability, sex, and reproductive status on their dispersal between laboratory environments. In general, flies with mating experience behave as if they are hungrier than virgin flies, leaving at a greater rate when food is unavailable and staying longer when it is available. Males dispersed at a higher rate and were more active than females when food was unavailable, but tended to stay longer in environments containing food than did females. We found no significant relationship between weight and activity, suggesting the behavioral differences between males and females are caused by an intrinsic factor relating to the sex of a fly and not simply its body size. Finally, we observed a significant difference between the dispersal of the natural isolate used throughout this study and the widely-used laboratory strain, Canton-S, and show that the difference cannot be explained by allelic differences in the foraging gene

    Testosterone production during puberty in two 46,XY patients with disorders of sex development and novel NR5A1 (SF-1) mutations

    Get PDF
    BACKGROUND: Steroidogenic factor 1 (SF-1, NR5A1) is a key transcriptional regulator of many genes involved in the hypothalamic–pituitary–gonadal axis and mutations in NR5A1 can result in 46,XY disorders of sex development (DSD). Patients with this condition typically present with ambiguous genitalia, partial gonadal dysgenesis, and absent/rudimentary Müllerian structures. In these cases, testosterone is usually low in early infancy, indicating significantly impaired androgen synthesis. Further, Sertoli cell dysfunction is seen (low inhibin B, anti-Müllerian hormone). However, gonadal function at puberty in patients with NR5A1 mutations is unknown. SUBJECTS AND METHODS: Clinical assessment, endocrine evaluation, and genetic analysis were performed in one female and one male with 46,XY DSD who showed spontaneous virilization during puberty. The female patient presented at adolescence with clitoral hypertrophy, whereas the male patient presented at birth with severe hypospadias and entered puberty spontaneously. Molecular analysis of NR5A1 was performed followed by in vitro functional analysis of the two novel mutations detected. RESULTS: Testosterone levels were normal during puberty in both patients. Analysis of NR5A1 revealed two novel heterozygous missense mutations in the ligand-binding domain of SF-1 (patient 1: p.L376F; patient 2: p.G328V). The mutant proteins showed reduced transactivation of the CYP11A promoter in vitro. CONCLUSION: Patients with 46,XY DSD and NR5A1 mutations can produce sufficient testosterone for spontaneous virilization during puberty. Phenotypic females (46,XY) with NR5A1 mutations can present with clitoromegaly at puberty, a phenotype similar to other partial defects of androgen synthesis or action. Testosterone production in 46,XY males with NR5A1 mutations can be sufficient for virilization at puberty. As progressive gonadal dysgenesis is likely, gonadal function should be monitored in adolescence and adulthood, and early sperm cryopreservation considered in male patients if possible

    An experimental study of dynamic behaviour of graphite polycarbonatediol polyurethane composites for protective coatings

    Full text link
    Segmented polycarbonatediol polyurethane (PUPH) has been synthesized and modified with different amounts of graphite conductive filler (from 0 to 50 wt%). Thermal and dynamical thermal analysis of the composites clearly indicates changes in the polyurethane relaxations upon addition of graphite. Broadband dielectric spectroscopy has been used to study the dielectric properties of the (PUPH) and one composite in the frequency range from 10−2 to 107 Hz and in the temperature window of −140 to 170 ◦C. Relaxation processes associated with different molecular motions and conductivity phenomena (Maxwell–Wagner–Sillars and electrode polarization) are discussed and related to the graphite contentWe acknowledge the financial support of the Ministry of Finances and Competitiveness through the Grant CDS2010-0044 belonging to the "Consolider-Ingenio Programme" and for the Grant MAT2012-33483. The authors thank UBE Chem Eur for the PCD supply for this work.Gómez, C.; Culebras, M.; Cantarero Saez, A.; Redondo Foj, MB.; Ortiz Serna, MP.; Carsí Rosique, M.; Sanchis Sánchez, MJ. (2013). An experimental study of dynamic behaviour of graphite polycarbonatediol polyurethane composites for protective coatings. Applied Surface Science. 275:295-302. https://doi.org/10.1016/j.apsusc.2012.12.108S29530227

    First observation of the drip line nucleus \u3csup\u3e140\u3c/sup\u3eDy: Identification of a 7 μs K isomer populating the ground state band

    Get PDF
    A new 7 μs isomer in the drip line nucleus 140Dy was selected from the products of the 54Fe (315 MeV) + 92Mo reaction by a recoil mass spectrometer and studied with recoil-delayed γ-γ coincidences. Five cascading γ transitions were interpreted as the decay of an Iπ = 8- {ν9/2-[514]⊗ ν7/2+[404]} Kisomer (T 1/2 = 7.0(5) μs) via the ground-state band. The probability of proton emission from 141Ho to the 0+ ground state and to the 2+ excited state in 140Dy is discussed
    corecore